Investigation of Cloud Phase Retrieval from AVHRR/3 Reflectance

Julie Haggerty

J. Vivekanandan

Guifu Zhang

Method

- Based on differences in refractive indices of ice and water at 1.6 □m
- Ratio of reflectance at AVHRR channels 1 and 3a (0.63 and 1.62 □m) is used as an indicator of thermodynamic phase
- Threshold for ratio depends on solar-satellite geometry and effective radius
- Ambiguities may arise from overlying thin cirrus and highly reflective surfaces

- 1. Imaginary part of refractive index of liquid and ice
- 2. Modeled reflectance ratio for a hypothetical cloud
- 3. Measured reflectance ratio vs. cloud top temperature

Phase Classification Decision Tree

Supercooled liquid observations by the NASA Twin Otter on Feb 21, 2002

Twin Otter Liquid Water Measurements on Feb 21, 2002

Reflectance ratio corresponding to Twin Otter flight on Feb 18, 2003

Icing conditions observed by the UW Convair during IMPROVE-II

AVHRR reflectance ratio look-up tables

(values based on NASA-Langley database)

Solar zenith $- \square_0 = 1, 0.95, 0.85, ..., 0.05$

Satellite zenith $- \square = 1, 0.9, 0.8, ..., 0.1$

Solar/satellite relative azimuth $- \square = 0, 7.5, 15, 30, 45, ..., 165, 172.5, 180^{\circ}$

Wavelengths
$$\square = 0.63, 1.62, 3.7 \square m$$

Particle size

Liquid –
$$r_e$$
 = 2, 4, 6, 8, 12, 16, 32 \square m
Ice – D_e = 6, 18, 24, 30, 45, 75, 105, 123, 135 \square m

Optical depth $\Box = 32, 64, 96, 12812$

Reflectance ratio corresponding to Twin Otter flight on Feb 13, 2003

Motivation

- Use of reflectance techniques provides complimentary information to GOES emission-based technique currently used for phase determination by IIDA
- Geographic coverage of polar orbiters extends utility of satellite-based phase retrieval methods to high latitudes